
1

Simulating Cat for two-choice game moves

Samir Lipovaca, Joe Burchfield

New York Stock Exchange, Inc.
20 Broad Street, 12 floorth

New York, N.Y. 10004

slipovaca@nyse.com

Abstract

Although present quantum computers are not robust enough to be effectively used for search, it is

possible to use the solution to the equation of the quantum search problem to simulate

quantum probabilistic behavior for two-choice game moves. Exploring the analogy between the state
space in AI and the quantum mechanical Hilbert space, we shall arrive at a classical weighted-choice
concept. We shall show how to construct a weighted-choice that implements the same math as the
solution to the quantum search problem. To illustrate our approach we shall modify a game called
Square-the-Diagonal. It is possible to generalize the weighted-choice to simulate quantum probabilistic
behavior for many-choice moves.

Introduction

The quantum search algorithm solves the following problem: Given a search space of size ,
and no prior knowledge about the structure of the information in it, we want to find an element of that
search space satisfying a known property. How long does it take to find an element satisfying that

property? Classically, this problem requires approximately operations, but the quantum search

algorithm allows it to be solved using approximately operations.

Search is an important aspect of Artificial Inteligence (AI) because in many ways, problem
solving in AI is fundamentally a search. An interesting use of search spaces is in games. Also known as
game trees, these structures enumerate the possible moves by each player allowing the search algorithm
to find an effective strategy for playing and winning the game. The above search algorithm with

approximately operations is quite a remarkable result. For example, if the quantum

search algorithm would need approximately only 100 operations. Obviously, AI and game trees would
significantly benefit from the quantum search algorithm. Unfortunately, present quantum computers are
not yet capable to play a significant role in Artificial Inteligence and games development.

The fact that present quantum computers are not robust enough to be effectively used for the

search does not prevent us from using the solution to the equation of the quantum

search problem to simulate quantum probabilistic behavior for two-choice game moves. In this paper
we shall show how to construct a corresponding classical weighted-choice that implements the same
math as the solution to the quantum search problem. We shall modify a game called Square-the-Diagonal
to illustrate our approach.

2

Quantum search algorithm

We suppose that the algorithm [1] starts with the quantum computer in a state at time

 The goal of quantum searching is to change into . Perhaps the simplest Hamiltonian

that can do such a job is :

 (1)

After a time the state of the quantum computer evolving according to the Hamiltonian and initially

in the state is given by

 (2)

where we effectively set Planck’s constant to 1. We can restrict the analysis to the two-dimensional

space spanned by and Performing the Gram-Schmidt procedure, we can find such that

forms an orthonormal basis for this space. Thus

(3)

for some such that and for convenience we have chosen the phases of and

so that and are real and non-negative. In the basis we have

(4)

where and are Pauli matrices. Using the following identity

where is a real unit vector in three dimensions and denotes the three component

vector of Pauli matrices, we have

Simple algebra shows that so the state of the quantum computer after a time

3

is

(5)

Observation of the quantum computer at time yields the result with probability

and the result with probability . Obviously,

probabilities sum to one since A quite remarkable result is observation of

the quantum computer at time . In this case and the quantum computer is in the

state with probability one. We have found a solution to the search problem! We choose

to be the uniform superposition state

(6)

Such a state can be prepared by doing a Hadamard transform. This choice gives and thus the

time of observation does not depend on knowing the value of x.

Square-the-Diagonal game (“Classical” variant)

The game [2] is played by two players as follows. The first player has a choice of 1, 2, or 3 units.
When he has made his choice, the second player has a choice of 1 or 2 units. Following this, the first
player, knowing how the second player has chosen, again has a choice of 1, 2, or 3 units. Imagine that
each choice determines respectively the length, the width, and the depth of a box. Thus the box
determined by a play of the game will have dimensions x, y, and z corresponding to the three consecutive

choices of the two players. The square of the length of its diagonal will be The

payoffs to each of the players will be determined by what turns out to be. Namely, if for a particular

outcome leaves a reminder of either 0 or 1 upon being divided by 4, then the amount will be won

by the first player. If leaves a remainder of either 2 or 3 upon being divided by 4, then the amount

will be won by the second player.

4

The firs t
player
choice

The second
player
choice

The firs t
player
choice

The firs t
player
payoff

1 1 1 -3

1 1 2 -6

1 1 3 -11

1 2 1 -6

1 2 2 9

1 2 3 -14

2 1 1 -6

2 1 2 9

2 1 3 -14

2 2 1 9

2 2 2 12

2 2 3 17

3 1 1 -11

3 1 2 -14

3 1 3 -19

3 2 1 -14

3 2 2 17

3 2 3 -22

 Table 1. The first player’s payoffs

The first player’s payoffs, including all the choices and the resulting positions are displayed in
the Table1. We see that if the first player starts the game by choosing 1 unit, the second player can
always be sure of winning something, for the second player can choose 1 unit, which gives the first player
a choice among losing 3, losing 6, or losing 11, depending on whether he chooses 1, 2, or 3 units for the
depth of the box.

Similarly if the first player starts with 3 units, the second player can again make sure that the first
player will lose something, namely by choosing 1 unit, which gives the first player a choice of losing 11,
14, or 19.

The matter looks different if the first player starts by choosing 2 units. For then, if the second
player continues with 1 unit, the first player can win 9 (by choosing 2 units on the final move). If the
second player continues with 2 units, the first player can win as much as17. It follows that the first player
can guarantee himself a win of 9 by starting with 2 units. The second player can do nothing to prevent
the first player from winning at least 9.

Weighted Choice Construction

Search algorithms are of interest in AI because many problems can be reduced to simple search

5

problems in a state space. The state space consists of states (nodes) and operators (edges), allowing the
state space to be represented as a graph. Examples range from graphs of physical spaces to massive game
trees which are possible with the game of Chess. Each node in the tree is a state in the state space and the
operator is simply a legal move between one state and another. The problem of search is to find a
sequence of operators that transition from the start to goal state. The sequence of operators is the solution.

Similarly, in quantum mechanics, associated to any isolated physical system is a complex vector
space with inner product (Hilbert space) known as the state space of the system. The system is completely
described by its state vector, which is a unit vector in the system’s state space. The time evolution of the

state of the system is described by the equation

(7)

where is a physical constant known as Planck’s constant. It is common to absorb the factor into

effectively setting is a fixed Hermitian operator known as the Hamiltonian of the closed

system. The state of the system at time is related to the state of the system at time by

a unitary operator which depends only on times and

(8)

If we set and it is easy to show that the solution to the equation is

 (9)

where If we set the equation (9) is equivalent to the equation (2).

Let us call the state of the system at time the start state, and the state of the system at time

the goal state. Then, the operator is simply the solution to the search problem. It transitions from

the start to the goal state. This will become obvious if we write as a sequence of operators. Namely,

if we break up the time into divisions of length can be developed incrementally as

follows:

where each factor corresponds to a move between two states separated in time by

Let us now look at the solution (5) to the quantum search problem in the light of this analogy

6

between the state space in AI and the quantum mechanical Hilbert space. The state shall be

regarded as the state of the classical computer when the choice 1 has been made. Similarly, the state

shall be regarded as the state of the classical computer when the choice 2 has been made. Then,

a weighted-choice is defined as

(10)

where represent choices 1, 2 respectively. is a classical analog of the quantum

mechanical solution (5). It cannot be interpreted as an ordinary mathematical equation with two variables

and Instead, the equation (10) is a symbolic notation that should be interpreted using
random numbers.

Let denote the probability that the choice 1 has been made. Similarly, let

denote probability that the choice 2 has been made. Clearly, Assuming

are defined up to 2 decimal places, is the number of outcomes leading to the occurrence

of the choice 1. is the number of outcomes leading to the occurrence of the choice 2. Outcomes

leading to the choice one can be simulated, for example, by an array that has elements equal to

1. Similarly, outcomes for the choice 2 can be simulated by an array that has elements equal to

2. Combining all outcomes together, let denote an array with elements, where the first

elements are equal to 1 and remaining elements are equal to 2. Then, the equation (10)

is interpreted as follows:

(11)

where a randomized sequence of the array indices is created at time and is the first element

of that sequence. For example, if the sequence at time is then

The APL programming language provides an elegant implementation of the

equation (11) as follows:

where creates a randomized sequence of the first 100 consecutive integers and returns the

first array element of the randomized sequence. Implicit here is that the above APL statement
is executed at time

Square-the-Diagonal (“Quantum” variant)

In this variant of the Square-the-Diagonal game, the second player is replaced with the weighted-

choice from the previous section. The game starts at time Again, the first player has a choice of
1, 2, or 3 units. When he has made his choice, the weighted-choice (11) is executed and only probabilities

7

 are revealed to the first player. Following this, the first player again has a choice of 1, 2, or 3

units. If for example at and the first player knowing that the choice of

2 units has been made could make his choice as in the “Classical” variant of the ordinary Square-the-

Diagonal game. Similarly, if and the first player knowing that the choice of 1 unit

has been made could make his choice as in the “Classical” variant of the game. For all other times

knowing only probabilities the first player could only guess what was the weighted-choice

(11) and based on the guess make a choice of 1, 2, or 3 units. When he has made his choice, his payoff
is revealed and the game is concluded.

APL weighted-choice implementation

The APL code (IBM APL2 Version 2.0) that implements the equation (11) is displayed in the
Appendix. There are 4 functions: PLAYG, Q, GAME1, and GAME2Q. PLAYG function is a top level
function to execute GAME1 or GAME2Q function N times. The function Q calculates a weighted-
choice. The input parameter N (a search space size) for this function is a large integer (for example
10000).

GAME1 function implements the “Classical” variant of the game with a constraint that the first
player cannot make a choice of 2 units on his first move. Without this constraint the “Classical” variant
would be too trivial since the second player could do nothing to prevent the first player from winning at
least 9. On his first move the first player randomly make a choice of 1 or 3 units. Following this, both
players make choices in order to maximize their payoffs. Looking at the Table1 it is easy to see that in
this variant of the game the first player always wins 9 or 17. Displayed below is a sample output when
the GAME1 was executed 10 times:

 10 PLAYG 1

GAME1 FIRST PLAYER PAYOFF: 1 2 2 9

GAME1 FIRST PLAYER PAYOFF: 3 2 2 17

GAME1 FIRST PLAYER PAYOFF: 1 2 2 9

GAME1 FIRST PLAYER PAYOFF: 1 2 2 9

GAME1 FIRST PLAYER PAYOFF: 3 2 2 17

GAME1 FIRST PLAYER PAYOFF: 3 2 2 17

GAME1 FIRST PLAYER PAYOFF: 1 2 2 9

GAME1 FIRST PLAYER PAYOFF: 3 2 2 17

GAME1 FIRST PLAYER PAYOFF: 3 2 2 17

GAME1 FIRST PLAYER PAYOFF: 3 2 2 17.

GAME2Q function implements the “Quantum” variant of the game. Again, the first player
cannot make a choice of 2 units on his first move, since the second player could do nothing to prevent
the first player from winning at least 9. The first move of the first player is a random choice of 1 or 3

units. Following this, the weighted-choice (11) is executed (the second player) and only probabilities

are revealed to the first player. Knowing only probabilities the first player will guess what was

the weighted-choice and based on the guess he will make a choice of 1, 2, or 3 units for the final move
in order to maximize his payoff. When he has made the final choice, his payoff is revealed and the game
is concluded. Displayed below is a sample output when the GAME2Q was executed 10 times:

8

 10 PLAYG 2

GAME2Q FIRST PLAYER PAYOFF: 1 2 1 ý6

GAME2Q FIRST PLAYER PAYOFF: 3 1 1 ý11

GAME2Q FIRST PLAYER PAYOFF: 3 1 1 ý11

GAME2Q FIRST PLAYER PAYOFF: 3 1 1 ý11

GAME2Q FIRST PLAYER PAYOFF: 3 1 1 ý11

GAME2Q FIRST PLAYER PAYOFF: 1 2 2 9

GAME2Q FIRST PLAYER PAYOFF: 1 2 2 9

GAME2Q FIRST PLAYER PAYOFF: 1 2 2 9

GAME2Q FIRST PLAYER PAYOFF: 1 2 2 9

GAME2Q FIRST PLAYER PAYOFF: 1 2 2 9

As we can see from this sample output, the second player (a weighted-choice) has a chance to win.

Discussion

Exploring the analogy between the state space in AI and the quantum mechanical Hilbert space,
we arrived at a weighted-choice concept using the solution to the quantum search problem. The
weighted-choice concept is a classical analog of the equation (5). The equation (5) is a superposition of

the states and in which is not possible to say that the system is definitely in the state

or definitely in the state We do not experience such a superposition in the classical world - the

world of our everyday’s experience. Therefore, the equation (10) is interpreted using random numbers.

As we showed in the Weighted Choice Construction section, a randomized sequence of the array

indices is created at time and is interpreted as the array element whose respective

index is the first element of the randomized sequence. This is equivalent to an observation of the quantum

computer at time which yields the result with probability and the result with

probability .

An obvious function of the weighted-choice concept is to simulate quantum probabilistic
behavior for two-choice moves. We designed a “Quantum” variant of the Square-the-Diagonal game in
which the second player was replaced by the weighted choice. The “Classical” variant of the Square-the-
Diagonal game is a game of perfect information, in which each player knows exactly the position reached
in the game so far. The “Quantum” variant of the game is a game of perfect information for the first

player only when or For all other times the game is not a game of perfect

information for the first player, since knowing only probabilities the first player could only guess

what was the weighted-choice (11) and based on the guess make a choice of 1, 2, or 3 units. Guessing
makes this variant of the game more challenging than the “Classical” variant. Also in this variant of the
game, the first player can still guarantee himself a win of 9 by starting with 2 units.

It is possible to generalize the weighted-choice to simulate quantum probabilistic behavior for
many-choice moves. Such a weighted-choice is defined as follows:

(12)

where represent choices respectively and are

corresponding probabilities of a solution to the equation which is, similar to (5), a

9

superposition of basis states. Obviously, The array in this case has the first

elements equal to 1, the following elements equal to 2, and etc. The equation (12) still

has an interpretation given by (11).

Conclusions

Although present quantum computers are not robust enough to be effectively used for the search,
it is possible to use the solution to the quantum search problem to simulate quantum probabilistic
behavior for two-choice game moves. We showed how to construct a corresponding classical weighted-

choice that implements the same math as the solution to the equation of the quantum

search problem . To illustrate our approach we modified a game called Square-the-Diagonal. Most of
times this “Quantum” variant of the game is not a game of perfect information for the first player and
this makes the game more challenging than the “Classical” variant. It is possible to generalize the
weighted-choice to simulate quantum probabilistic behavior for many-choice moves.

Appendix

 N PLAYG G;�IO;T;V

ä TOP FUNCTION TO PLAY N TIMES GAME1 OR GAME2Q

ä N IS NUMBER OF TIMES TO PLAY GAME1 OR GAME2Q

ä G IS GAME SELECTOR (G=1 PLAY GAME1, G=2 PLAY GAME2Q)

 �IO½1 ä SET ORIGIN TO 1

 T½Gã('GAME1' 'GAME2Q') ä KEEPS WHICH GAME TO PLAY

 V½N/âT ä VECTOR OF N REPETITIONS OF T

 6þV ä EXECUTE SELECTED GAME N TIMES

 R½T Q N;�IO;ALPHA;PCH1;PCH2;O1;O2;WCH;P2C;�RL

ä FUNCTION THAT CALCULATES WEIGHTED CHOICE

ä N IS AN INTEGER

ä T IS TIME IN SECONDS

 �IO½1 ä SET ORIGIN TO 1

 �RL½+/�TS ä SET RANDOM SEED

 ALPHA½1ö(N*0.5) ä DEFINE ALPHA

 PCH1½(2ê(ALPHAõT))*2 ä PROBABILITY OF CHOICE 1

 PCH2½(1ê(ALPHAõT))*2 ä PROBABILITY OF CHOICE 2

 PCH1½2 ROUND PCH1 ä ROUND PROBABILITIES TO 2 DECIMAL PLACES

 PCH2½2 ROUND PCH2 ä ROUND PROBABILITIES TO 2 DECIMAL PLACES

 O1½100õPCH1 ä NUMBER OF OUTCOMES 1

 O2½100õPCH2 ä NUMBER OF OUTCOMES 2

 WCH½(O1/1),(O2/2) ä WCH ARRAY REFRENCED IN THE PAPER

 P2C½ÆWCH[100?100] ä WEIGHTED CHOICE

 R½PCH1 PCH2 O1 O2 P2C ä RETURN PROBABILITIES, NUMBER OF OUTCOMES AND WEIGHTED CHOICE

10

 R½GAME1;�IO;A;B;T;T2;P;T3;CHOICES;B;M;SP;SC;�RL;FP;FC
ä CLASSICAL GAME

 �IO½1 ä SET ORIGIN TO 1

 A½1 2 ä SECOND PLAYER CHOICES

 B½(3 1)æì3 ä FIRST PLAYER CHOICES

ä CONSTRUCT FIRST PLAYER'S PAYOFF MATRIX

 T½(6 2)æîAø.,B ä COMBINE SECOND PLAYER MOVES WITH FIRST PLAYER SECOND MOVES

 T½(T,[1]T),[1]T ä APPEND TWICE T TO ITSELF

 T2½,['']6/1 2 3 ä FIRST PLAYER OPENING MOVES

 P½T2,[2]T ä ASSEMBLE FIRST AND SECOND PLAYER ALL MOVES

 T½4|T3½(+/PõP) ä DETERMINE REMINDERS WHEN OUTCOME DIVIDED BY 4

 T2½~(0=T)ë(1=T) ä IDENTIFY WHEN SECOND PLAYER WINS

 T3[T2/ìæT3]½(ý1)õT3[T2/ìæT3] ä MAKE PAYOFFS NEGATIVE WHEN SECOND PLAYER WINS

 P½P,[2]T3 ä FIRST PLAYER'S PAYOFF MATRIX

 CHOICES½0æ0 ä HOLDS CHOICES FOR BOTH PLAYERS

 �RL½(+/�TS)õ(+/�TS) ä SET RANDOM SEED

 M½(1 3)[î1?2] ä FIRST PLAYER RANDOM CHOICE (EXCLUDING 2 AS FIRST CHOICE)

 CHOICES½CHOICES,M ä UPDATE CHOICES

 T½(P[;1]=M)ðP ä REDUCE PAYOFF MATRIX TO THE FIRST CHOICE OF THE FIRST PLAYER

 SP½¾/T[;4] ä FIND SECOND PLAYER CHOICE THAT MAXIMIZES HIS PAYOFF

 SC½Æ(T[;4]=SP)/T[;2] ä SECOND PLAYER RESPECTIVE CHOICE

 CHOICES½CHOICES,SC ä UPDATE CHOICES

 B½P[;ì2]¶_MM CHOICES ä FIND WHERE CHOICES IS LOCATED IN P

 T½BðP ä REDUCE PAYOFF MATRIX TO CHOICES

 FP½©/T[;4] ä FIRST PLAYER CHOICE THAT MAXIMIZES HIS PAYOFF

 FC½Æ(T[;4]=FP)/T[;3] ä FIRST PLAYER RESPECTIVE CHOICE

 CHOICES½CHOICES,FC ä UPDATE CHOICES

 B½P[;ì3]¶_MM CHOICES ä FIND WHERE CHOICES ARE LOCATED IN P

 'GAME1 FIRST PLAYER PAYOFF: ',,BðP ä GAME ENDS

 R½GAME2Q;�IO;A;B;T;T2;P;T3;CHOICES;B;M;�RL;PCH1;PCH2;O1;O2;P2C;FPP;TT;FP2
ä QUANTUM VERSION OF THE GAME

 �IO½1 ä SET ORIGIN TO 1

 A½1 2 ä SECOND PLAYER CHOICES

 B½(3 1)æì3 ä FIRST PLAYER CHOICES

ä CONSTRUCT FIRST PLAYER'S PAYOFF MATRIX

 T½(6 2)æîAø.,B ä COMBINE SECOND PLAYER MOVES WITH FIRST PLAYER SECOND MOVES

 T½(T,[1]T),[1]T ä APPEND TWICE T TO ITSELF

 T2½,['']6/1 2 3 ä FIRST PLAYER OPENING MOVES

 P½T2,[2]T ä ASSEMBLE FIRST AND SECOND PLAYER ALL MOVES

 T½4|T3½(+/PõP) ä DETERMINE REMINDERS WHEN OUTCOME DIVIDED BY 4

 T2½~(0=T)ë(1=T) ä IDENTIFY WHEN SECOND PLAYER WINS

 T3[T2/ìæT3]½(ý1)õT3[T2/ìæT3] ä MAKE PAYOFFS NEGATIVE WHEN SECOND PLAYER WINS

 P½P,[2]T3 ä FIRST PLAYER'S PAYOFF MATRIX

 CHOICES½0æ0 ä HOLDS CHOICES FOR BOTH PLAYERS

 �RL½(+/�TS)õ(+/�TS) ä SET RANDOM SEED

 M½(1 3)[î1?2] ä FIRST PLAYER RANDOM CHOICE (EXCLUDING 2 AS FIRST CHOICE)

 CHOICES½CHOICES,M ä UPDATE CHOICES

 T½(P[;1]=M)ðP ä REDUCE PAYOFF MATRIX TO THE FIRST CHOICE OF THE FIRST PLAYER

 ä THIS SIMULATES TIME WHEN SECOND PLAYER REVEAL HIS CHOICE PROBABILITIES

 T2½(+/3600 60 1 0.001õ3Ç�TS)õ(+/3600 60 1 0.001õ3Ç�TS)

 (PCH1 PCH2 O1 O2 P2C)½T2 Q 10000 ä GET SECOND PLAYER PROBABILITIES AND CHOICE

 FPP½(1+(PCH1òPCH2))ã2 1 ä FIRST PLAYER GUESS OF THE SECOND PLAYER CHOICE

 TT½(T[;2]=FPP)ðT ä REDUCE PAYOFF MATRIX TO THE FPP

ä SECOND CHOICE OF THE FIRST PLAYER BASED ON HIS GUESS OF THE SECOND PLAYER CHOICE

 FP2½Æ(TT[;4]=(©/TT[;4]))ðTT[;3]

ä UPDATE CHOICES WITH SECOND PLAYER CHOICE AND FIRST PLAYER GUESS OF THE SECOND ä

PLAYER CHOICE

 CHOICES½CHOICES,P2C,FP2

 B½P[;ì3]¶_MM CHOICES ä FIND WHERE CHOICES ARE LOCATED IN P

 'GAME2Q FIRST PLAYER PAYOFF: ',,BðP ä GAME ENDS

11

References

[1] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information”,

(Cambridge University Press, Cambridge, 2000).

[2] A. Rapoport, “Two-Person Game Theory”, (Dover Publications, Inc., Mineola, New York, 1999).

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

